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Abstract. Harmonics generation of high-frequency radiation in a plasma embedded in a constant electric
field is investigated theoretically. It is shown that the electron directed motion due to the static electric
field yields the appearance in the plasma emission spectrum of high-frequency radiation even harmonics.
The conditions are established when the even harmonics generation is as effective as that of the odd ones.
At variance with the odd harmonics, the even harmonics polarization plane is found to rotate with respect
to that of the fundamental field. The basic dependencies concerning the rotation angle and the generation
efficiency on the plasma and field parameters are established.

PACS. 52.50.Jm Plasma production and heating by laser beams (laser-foil, laser-cluster, etc.) – 52.38.Dx
Laser light absorption in plasmas (collisional, parametric, etc.)

1 Introduction

Radiation spectra are a powerful tool to investigate
plasma properties (see, for instance, [1]). If the plasma
interacts with a strong high-frequency radiation field the
spectral composition of its radiation emission becomes
considerably reacher. The reason of such an enrichment
has a two-fold nature. First, under the action of strong
high-frequency fields in the plasma the development of
parametric instabilities is possible [2,3], which contributes
to the modification of the radiation spectra. Second,
in the radiation spectra may appear harmonics of the
high-frequency field itself. In a homogeneous fully ion-
ized plasma one of the basic mechanisms to generate har-
monics is given by the electron-ion (e-i) collisions. As
shown in paper [4], in the above plasma, e-i collisions in
a strong high-frequency field yield generation of odd har-
monics only. Absence of even harmonics is consequence
of the invariance of the Rutherford e-i scattering cross-
section under the symmetry operation of the electron ve-
locity direction inversion, and of the isotropy of the initial
Maxwellian electron velocity distribution function (EDF).
Generation of only odd harmonics takes place also in the
case when the plasma exhibits a bi-Maxwellian EDF [5],
which may be formed as a result of the laser radiation
inverse bremsstrahlung [6,7]. In this case too, invariance
under inversion of the electron velocity direction is pre-
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served. At the same time, experimental conditions may
take place when the EDF is not symmetric with respect
to the inversion of velocity direction. Very frequent is, for
instance, the case when a plasma is embedded in an uni-
form constant electric field

−→
E 0. In such a case, in the EDF

appears an antisymmetric part, which, in particular, de-
termines the current density. It is just a situation which
takes place in direct plasma discharges (see, for instance,
the review paper [8]). Besides, if the electric field

−→
E 0 is

switched on in a time smaller than the electron mean free
path time, and its strength is smaller than the Dreicer
critical field, in the initial stage two time intervals may be
singled out. For time smaller than the electron mean free
path time a freely accelerated electron motion takes place,
which is characterized by a linear in time growth of the
current density and by an anisotropic correction to the
EDF. For times larger than the electron mean free path
time, the freely accelerated electron motion evolves into
a quasistationary drift motion, characterized by a veloc-
ity which is smaller than the thermal velocity. At these
later times, the EDF anisotropic part depends on velocity
differently as compared to the first time interval.

In this paper we show that the presence of just an anti-
symmetric term in the EDF yields the high-frequency field
even harmonics generation thanks to e-i collisions. As in
different time stages of the discharge the EDF anisotropic
part exhibits different dependencies on velocity, the even
harmonics generation characteristics in such stages will
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be different. It implies that measuring plasma emission
at the high-frequency field even harmonics it is possible
to obtain information on the evolution of electron cur-
rent velocity, which is highly significant to check a series
of anomalous properties of current-currying plasmas [8].
Having in mind this possibility, it is worth to investigate
the even harmonics properties in plasmas with anisotropic
EDF. A first step in this direction is done in the present in-
vestigation, where the even harmonics generation is stud-
ied in the freely accelerated electron motion regime. Below
high-order harmonic generation is investigated in the con-
ditions, when the electron drift velocity in the electric field−→
E 0 remains small in comparison to the electron thermal
velocity vT . In such conditions, the influence of the con-
stant field

−→
E 0 on the odd harmonics generation efficiency

is small, and the latter remains essentially the same as for−→
E 0 = 0. At the contrary, the even harmonics generation
efficiency is proportional to

−→
E 2

0 and may become of the
same order of magnitude as that of odd harmonics. Below,
the main attention will be paid to the investigation of even
harmonics for which we will establish the generation effi-
ciency as function of the laser and plasma parameters.

We establish below that the largest generation effi-
ciency at frequency 2nω, where n = 1, 2, ..., as well as
for (2n + 1)ω, is obtained when the ratio of the electron
quiver velocity amplitude in the high-frequency field vE

to the thermal velocity vT is approximately 2
√

n. We also
show that even harmonics are polarized in a plane rotated
from that of the fundamental radiation polarization. The
value of the rotation angle depends on the harmonic num-
ber, the value of the ratio vE/vT and the orientation of the
field

−→
E 0 with respect to the high-frequency field

−→
E and

its wavevector
−→
k . It is worthy to note that, in the con-

ditions considered below, for the odd harmonics there is
no effect of polarization plane rotation. All odd harmon-
ics are polarized in the same plane as the fundamental
high-frequency field.

2 High-frequency currents

Let us consider a fully ionized plasma, interacting
with a constant electric field

−→
E 0 and a high-frequency

monocromatic electromagnetic field
−→
E cos(ωt − −→

k · −→r ),−→
k · −→E = 0. We assume that the laser frequency ω is
considerably larger than the electron plasma frequency
ωL = (4πe2N/m)1/2, where e and m are, respectively, the
electron charge and mass, and N is the electron density.
We confine our investigation to the case when both the
electron thermal velocity vT and the quiver velocity am-
plitude vE = |eE/mω| are much smaller than the speed
of light c. In such conditions the frequency ω is related to
the wavevector

−→
k by the familiar dispersion relation

ω2 = ω2
L + k2c2. (1)

Besides, in a Maxwellian plasma, in considering the elec-
tron kinetics in the presence of a high-frequency field, is

legitimate to neglect the influence of the variable magnetic
field as well as the weak nonuniformity in the electron
distribution, caused by the finite value of the vector

−→
k .

Within the above assumptions and simplifications, to de-
termine the EDF f we have the equation

∂f

∂t
+

e

m

−→
E0

∂f

∂−→v +
e

m

−→
E cos(ωt −−→

k −→r )
∂f

∂−→v = St (f) , (2)

where the e-i collision integral has the form

St(f) =
1
2
ν(v)

∂

∂vi
(v2δij − vivj)

∂f

∂vj
. (3)

Here ν(v) = 4πZe4NΛ/m−2v−3
T is the e-i collision fre-

quency, Z the ion ionization multiplicity, Λ the Coulomb
logarithm.

Being interested in time moments smaller than the in-
verse of the e-i collision frequency, t < ν−1, ν = ν(vT ),
the collision integral in equation (2) may be taken into
account as a perturbation. Neglecting collisions in equa-
tion (2) to the zero approximation we have

f0 = fm

[−→v −−→v E sin(ωt − −→
k −→r ) − e

−→
E 0t/m

]
, (4)

where −→v E = e
−→
E/mω, fm(v) = N(2π)−3/2v−3

T× exp(−v2/2v2
T ) is a Maxwellian EDF. The solution to

equation (2) has been written under the assumption that
the constant electric field is switched on at the moment
t = 0. It corresponds to the physical situation when to
the plasma, interacting with the high-frequency laser ra-
diation, a constant electric field is applied for a time much
smaller than ν−1. Accordingly the relatively simple solu-
tion (4) to the kinetic equation is valid for a time interval
small as compared to the inverse of the e-i collision fre-
quency. To the distribution (4) corresponds the electron
current density

−→
j 0 = e

∫
d−→v −→v f0

= eN−→v E sin(ωt −−→
k −→r ) +

e2

m

−→
E 0Nt. (5)

According to (5), describing the electrons directed motion
in the field

−→
E 0, the electron current velocity grows pro-

portionally to t in so far as t < ν−1. The addition δf
to f0 due to collisions is described by an equation as (2),
where in the l.h.s. enters δf , while in the collision integral
enters f0 instead of f .

Taking into account the identity
∫

d−→v δf = 0, meaning
absence of contribution by δf to the electron density, from
the kinetic equation for δf we find the time derivative of
the correction δ

−→
j = e

∫
d−→v · −→v δf to the unperturbed

current density
−→
j 0:

∂

∂t
δ
−→
j = e

∫
d−→v −→v St(f0) = ieνv3

T

∫
d−→q

(2π)3
−→q 4π

q2

×
∫

d−→u exp
[
i−→q −→u + i−→q −→v E sin(ωt −−→

k −→r )
]

× fm

(−→u − e

m

−→
E 0t

)
. (6)
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The relation (6) is all what we need to describe harmonics
generation of high-frequency current in a plasma with dis-
placed EDF. In absence of the static electric field

−→
E 0 = 0,

equation (6) describes generation of odd harmonics, with
frequencies (2n + 1)ω, n = 1, 2, ... [4].

If
−→
E 0 �= 0, the same relation (6) describes generation

of even harmonics 2nω as well, where n = 1, 2, ... We show
it considering a short time interval, when the electron drift
velocity is yet small as compared to the electron thermal
velocity |eE0t/m| � vT , but ωt � 1. Under these restric-
tions, in equation (6) is sufficient to keep only the terms
linear in the field

−→
E 0. Then, by integrating in equation (6)

over the velocity −→u , we find

∂

∂t
δ
−→
j = −eNνv3

T

∫
d−→q

(2π)3
4π

q2
−→q exp

(
−1

2
q2v2

T

)

×
{

2
∞∑

n=0

J2n+1 (−→q −→v E) sin
[
(2n + 1)

(
ωt −−→

k · −→r
)]

+
e

m

(−→q −→
E 0

)
t

[
J0 (−→q −→v E)

+ 2
∞∑

n=1

J2n (−→q −→v E) cos
[
(2n + 1)

(
ωt −−→

k · −→r
)] ]}

,

(7)

where Jn(x) is the nth order Bessel function. From equa-
tion (7) for the current odd harmonics (2n + 1)ω we have

∂

∂t
δ
−→
jodd =

∞∑
n=0

∂

∂t
δ
−→
j 2n+1

× sin
[
(2n + 1)(ωt −−→

k · −→r )
]
, (8)

∂

∂t
δ
−→
j2n+1 = −ω2

L

4π

−→
E

√
2
π

ν

ω

8
γ3

∫ γ/2

0

dzz2

× exp(−z2)
[
In(z2) − In+1(z2)

]
, (9)

where γ = vE/vT , In the nth order modified Bessel func-
tion. According to equation (9) the odd harmonics current
is directed along the high-frequency field

−→
E .

A different situation takes place for the current of
even harmonics. As the vector

−→
E 0 has arbitrary orienta-

tion with respect to the vectors
−→
k and

−→
E , in the general

case the current density vector δ
−→
jeven has components

along
−→
k ,

−→
E and

−→
k × −→

E . For harmonics generation is of
interest the vortex part of the current density for which
rot δ

−→
jeven �= 0 or

−→
k × δ

−→
jeven �= 0. Using these consider-

ations, for the current density vortex part at frequencies

2nω, n = 1, 2, ..., from equation (7) we find

∂

∂t
δ
−→
jeven =

∞∑
n=1

∂

∂t
δ
−→
j2n

× cos
[
(2n + 1)(ωt −−→

k · −→r )
]
, (10)

∂

∂t
δ
−→
j2n = −ω2

L

4π

√
2
π

νt

∫ 1

0

dx
{

2x2−→ε (−→ε −→
E 0)

+(1 − x2)−→κ (−→κ−→
E 0)

}
F

[
n,

1
4
x2γ2

]
, (11)

where −→ε =
−→
E/E, −→κ =

−→
k × −→

E/kE and the function
F (n, y) has the form

F (n, y) = [(2n + 1 − 2y)In(y) + 2yIn+1(y)] exp(−y).
(12)

Besides the high-frequency currents equations (8–12), for-
mula (7) contains a term proportional to J0(−→q · −→v E),
which for ωt � 1 describes a contribution to the current
slowly varying in time. This term is out of interest for the
harmonic generation theory, and its discussion in what
follows will be omitted.

3 Harmonics field in the plasma

To determine the strength of the field generated in the
plasma at the frequency (2n + 1)ω, let us use the wave
equation with a current source, described by one of the
terms of equation (9), which has the form

(
∂2

∂t2
− c2 ∂2

∂−→r 2
+ ω2

L

)−→
E 2n+1(−→r , t) =

− 4π
∂

∂t
δ
−→
j 2n+1 sin

[
(2n + 1)(ωt −−→

k · −→r )
]
. (13)

This linear equation has the following forced solution

−→
E 2n+1(−→r , t) = −−→

E 2n+1 sin
[
(2n + 1)(ωt −−→

k · −→r )
]
.

(14)
Harmonics generation efficiency η2n+1 is defined as the
ratio of the energy flux density at the frequency (2n+1)ω,
I2n+1 = cE2

2n+1/8π, to that at the fundamental frequency
I = cE2/8π. Taking into account the dispersion relation of
the fundamental wave (1), the relations (9), (13) and (14),
for the (2n + 1)ω harmonics generation efficiency we find

η2n+1 =
( ν

ω

)2

H (2n + 1, γ) , (15)

H (2n + 1, γ) =
8
π

γ−6

{
1

n (n + 1)

∫ γ/2

0

dzz2

× exp(−z2)
[
In(z2) − In+1(z2)

]
}2

.

(16)
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For the field generated in the plasma at the frequen-
cies 2nω we have the wave equation

(
∂2

∂t2
− c2 ∂2

∂−→r 2
+ ω2

L

)−→
E 2n(−→r , t) =

− 4π
∂

∂t
δ
−→
j2n cos

[
2n(ωt −−→

k · −→r )
]
, (17)

where in the r.h.s. appears the current source, described
by equation (11). As ωt � 1, in solving equation (17) we
can neglect the slow time variation of the current source
amplitude. As a result, for the even harmonics electric
field we find

−→
E 2n(−→r , t) = −−→

E 2n cos
[
2n(ωt −−→

k · −→r )
]
. (18)

Using the dispersion relation (1) and the rela-
tions (11), (12), (18) from equation (17) we obtain the
field strength

−→
E 2n. This field defines the energy flux den-

sity at frequency 2nω, I2n = cE2
2n/8π, and, at the same

time, the even harmonics generation efficiency

η2n =
I2n

I
=

( ν

ω

)2
(

eE0t

mvT

)2

H (2n, γ) , (19)

H (2n, γ) =
2
π

1
(4n2 − 1)2

γ−2
[
α2

l G
2
l (n, γ) + α2

t G
2
t (n, γ)

]
,

(20)

where use is made of the notations αl = −→ε · −→E 0/E0, αt =
−→κ · −→E 0/E0, while the functions Gl and Gt have the form

Gl(n, γ) = 2

1∫

0

dxx2F

[
n,

1
4
x2γ2

]
, (21)

Gt(n, γ) =

1∫

0

dx(1 − x2)F
[
n,

1
4
x2γ2

]
. (22)

According to (19) even harmonics generation efficiency
grows proportionally to t2. It is traced back to the cir-
cumstance that, for a time interval t < ν−1, the velocity
of electron directed motion, which determines the EDF de-
gree of anisotropy, under the

−→
E 0 action grows proportion-

ally to t. Thanks to the inequality ωt � 1 > ν−1, the har-
monics electric field adiabatically follows the changes of
the EDF degree of anisotropy. According to equation (20),
the even harmonics generation efficiency depends on the
direction of the constant electric field

−→
E 0 with respect to

the
−→
E and

−→
k × −→

E vectors. It is due to the fact that the
plasma conductivity has different values along the

−→
E and−→

k ×−→
E vectors. As a consequence, in the plane orthogonal

to the
−→
k vector the field

−→
E 2n undergoes rotation with

respect to the field
−→
E . The value of the rotation angle de-

pends on the ratio vE/vT , the orientation of the vector
−→
E 0

with respect to
−→
E and

−→
k × −→

E , the harmonic number n,

and is given by the relation

Ψ(2n, γ) = arctg
[
αtGt(n, γ)
αlGl(n, γ)

]
. (23)

We note that no polarization rotation takes place in
the case of odd harmonics. The functions η equa-
tions (15), (19) and Ψ (23) define the generation character-
istics of high-frequency field harmonics in a given plasma
point vs. the plasma and fields parameters. The radia-
tion at harmonic frequencies going out from the plasma
depends on the given specific experiment geometry. Dis-
cussion of the harmonics generation aspects due to the
experimental specificity is out of the scope of the present
paper.

4 Weak and strong field harmonics
generation asymptotics

In the limits of weak and strong high-frequency fields the
laws governing the high-order harmonics generation have a
relatively simple form. We report below on the asymptotic
formulae for even harmonics. In the weak field case, when
γ � 2

√
n, from equations (12), (20–23) we find

H (2n, γ) � 2
π

γ4n−2

[
(2n + 1)2 α2

l + α2
t

]

(2n + 3)2 (n!)2 (4n2 − 1)2 43n−1
,

(24)

Ψ(2n, γ) � arctg
[

αt

αl (2n + 1)

]
, γ � 2

√
n. (25)

According to equation (24), even harmonics generation
efficiency rapidly decreases with the increase of harmonic
number. Besides, as it is seen from equation (25), dimin-
ishes also the departure of the harmonic field direction
from that of the fundamental field. The most high val-
ues of generation efficiency correspond to the case when
the constant electric field is along the fundamental high-
frequency field. If this two fields are aligned αl = 1, αt = 0
and all the even harmonics have the same polarization as
the fundamental field Ψ(2n, γ) = 0.

In the strong field case, when γ � 2
√

n, the
relations (12), (20–23) yield the following asymptotic
expressions

H (2n, γ) � 8
π

γ−4 1

(4n2 − 1)2

{
α2

t

[
Ct − γ−2L (n, γ)

]2

+ 4α2
l γ

−4 [L (n, γ)]2
}

, (26)

Ψ(2n, γ) � arctg
{

αt

2αl

[
Ctγ

2L−1 (n, γ)−1
]}

, γ � 2
√

n,

(27)

where are used the notations Ct � 0.4,

L (n, γ) =

(
4n2 − 1

)
√

8π

[
ln

(
γ2

4n

)
+ C(n)

]
, (28)
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C(1) � 1.4, C(2) � −0.33, C(3) � −0.88, C(4) � −1.2,
C(5) � −1.4, ...

In a strong field, even harmonics generation efficiency
decreases vs. the harmonic number n more slowly as com-
pared with the weak field case. Efficiency generation de-
creases also with the increase of the ratio γ = vE/vT . The
physical reason of such a behavior is the decreasing of the
effective electron-ion collision frequency in a strong field.
The rapidity of the function H (2n, γ) decreasing vs. the
increase of γ = vE/vT depends on the

−→
E 0 field direction

with respect to the
−→
E and

−→
k × −→

E vectors. The high-
est values of even harmonics generation efficiency result
when

−→
E 0||−→k ×−→

E . If instead the
−→
E 0 field is directed along

the strong high-frequency field, then the generation effi-
ciency values are smaller than in the previous geometry
by the small factor γ−4(ln γ2)2 � 1. The reason of the
strong anisotropy in even harmonics generation efficiency
is again traced back to the strong anisotropy of the ef-
fective electron-ion collision frequency in the presence of
a strong high-frequency field. It is in fact known [9–11]
that in the direction orthogonal to the

−→
E field the effec-

tive collision frequency becomes larger than in the parallel
direction by the factor γ2/ lnγ2 � 1. The effect of the col-
lision frequency strong anisotropy manifests itself also in
the behavior of the function Ψ (2n, γ), equation (27). In
fact, when

−→
E 0||−→k ×−→

E the rotation angle of the even har-
monics field with respect to the fundamental field has its
largest value, being π/2. Instead, if

−→
E 0||−→E , there is no

rotation effect and Ψ (2n, γ) = 0.
We conclude this section reporting asymptotic expres-

sions for two limiting cases for the function H(2n + 1, γ)
equation (16) as well. For γ � 2

√
n, from equation (16)

we have

H (2n + 1, γ) � 8
π

[2n (n + 1)! n (2n + 3)]−2
(γ

2

)4n

,

γ � 2
√

n, (29)

while for γ � 2
√

n, equation (16) gives

H (2n + 1, γ) � γ−6

[
(2n + 1)

πn(n + 1)

(
ln

γ

2
√

n
− Cn

)]2

,

γ � 2
√

n, (30)

where C1 = 0.31, C2 = 0.50, C3 = 0.64, C4 = 0.75, C5 =
0.84.

The asymptotic expressions reported in this section are
meant to help to visualize the specific roles of the basic ra-
diation and plasma parameters in the two opposite limits
of weak and strong fields. They are also useful and com-
plementary when dealing with the numerical evaluation of
H(2n, γ) and Ψ(2n, γ).

5 Calculations of the harmonics basic
characteristics

The analytical relations derived above are illustrated by
numerical calculations reported in Figures 1–5.

2n

0 2 4 6 8 10 12 14 16

H
(2

n,
 γ

)

10-15

10-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10

4

2

0.5

Fig. 1. Even harmonics generation efficiency vs. the harmonic
number for αt = αl = 1/

√
2, with αl and αt being, respec-

tively, cosines of the angles between
−→
E0 and

−→
E or

−→
k ×−→

E . The
different sets of discrete points are connected by lines to help
visualization. The numbers on the curves correspond to four
values of the ratio of the electron quiver velocity to the thermal
one γ = vE/vT = 0.5, 2, 4, 10.

In Figure 1 is shown the H (2n, γ) function (20) de-
pendence on the harmonic number for different values of
the parameter γ. For a given γ the points corresponding
to different n are connected by a line to help visualization.
Calculations are performed for αl = αt = 1/

√
2, when the

field
−→
E 0 forms the angle π/4 with either

−→
E and

−→
k × −→

E .
According to Figure 1, for a given γ = vE/vT the genera-
tion efficiency decreases with the increase of the harmonic
number. This behavior is also seen in formulae (24), (26).

Fixing the harmonic number and increasing γ the func-
tion H(2n, γ) initially grows, around γ ≈ 2

√
n reaches its

maximum value and then monotonically decreases. It is
easily seen by comparing points from different lines cor-
responding to a given n. The non-monotonical behavior
of H(2n, γ) vs. γ is shown in Figure 2, where H(2n, γ) is
plotted for the second, forth and sixth harmonics (n = 1, 2
and 3). For these harmonics Figure 2 shows that the gen-
eration efficiency largest values are reached respectively at
γ(2ω) ≈ 1.8, γ(4ω) ≈ 2.8 and γ(6ω) ≈ 4.0. All the results
plotted in Figure 2 are obtained for αl = αt = 1/

√
2. For

others αl and αt values, the dependencies are similar, with
relatively small numerical departures. We remark that the
presence of a maximum of the function H(2n, γ) around
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γ

0 2 4 6 8 10

H
(2

n,
γ)

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

6ω

4ω

2ω

Fig. 2. The same as Figure 1 vs. γ = vE/vT for αt = αl =
1/

√
2. The numbers on the curves are, respectively for the sec-

ond, forth and sixth harmonics. For the meaning of symbols
see caption to Figure 1.

γ ≈ 2
√

n may be established also from the asymptotic
relations (24), (26).

Figure 3 reports the dependence of H(m, γ) vs. m for
γ = 2 and 10. m is either 2n on 2n + 1. For each γ value
are reported two sets of points corresponding to αl = 0,
αt = 1 and to αl = 1, αt = 0. From Figure 3 and formu-
lae (24), (26), (29) and (30) the following characteristic
features may be singled out. First, in the strong field case,
when γ � 2

√
n, and at fixed γ value, the even harmon-

ics generation efficiency has its largest value for αl = 0,
αt = 1, i.e. when

−→
E 0||−→k ×−→

E . At the contrary, in the weak
field case, when γ � 2

√
n, even harmonics are generated

better if αl = 1, αt = 0, i.e. when
−→
E 0||−→E . These prop-

erties may be deduced from formulae (24), (26) as well,
and are explained by the anisotropy of the electron effec-
tive collision frequency in a strong high-frequency field.
Second, even harmonics generation efficiency may be as
high as that of the odd ones, and even higher, in spite of
the presence, in its defining expression (19), of the small
factor (eE0t/mvT )2 � 1, (see Fig. 3). Figure 4 shows the
function Ψ(2n, γ) dependence on n, for the same γ values
as in Figure 1. According to Figure 4, than larger γ, than
greater the rotation angle the even harmonics polarization
plane forms with respect to that of the fundamental field.
For a given γ value the function Ψ(2n, γ) monotonically
decreases with the increase of the harmonic number. Fig-
ure 5 shows instead the Ψ(2n, γ) monotonical growth with

m
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,γ
)
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Fig. 3. Harmonics generation efficiency H(m,γ) vs. the har-
monic number m for γ = 2 (white symbols) and 10 (black
symbols). To each γ value correspond two sets of points with
even m numbers, obtained for αl = 0, αt = 1 (triangles) and
αl = 1, αt = 0 (squares). Odd harmonics are marked by circles.
For the meaning of symbols see caption to Figure 1.

the γ values increase. Here are plotted the Ψ(2n, γ) curves
for the second, forth and sixth harmonics. From Figure 5
the Ψ(2n, γ) decrease vs. n may be seen as well.

Let us give an estimate of the even harmonics gen-
eration efficiency. Let the frequency of the fundamental
radiation be ω = 2 × 1014 s−1, and the energy flux den-
sity I = 6 × 1012 W/cm2, and let the plasma parameters
be Z = 2, T = 50 eV and N = 1018 cm−3. With these
radiation and plasma parameters the effective e-i collision
frequency is ν = 4 × 1011 s−1, the electron plasma fre-
quency ωL = 6 × 1013 s−1 and the ratio γ = vE/vT � 2.
Let us assume that the constant field

−→
E 0 direction form

the angle π/4 with both the vectors
−→
E and

−→
k × −→

E ,
which gives αt = αl = 1/

√
2. Taking the strength of

the constant electric field E0 = 10 kV/cm, in the time
interval t < ν−1 � 2 ps the electron drift velocity re-
mains small as compared to vT , and at the instant time
t � 2 ps reaches the value |eE0t/m| � 0.1vT . Within the
chosen conditions, in accordance with formulae (19), (20)
and Figure 2, the second harmonic generation efficiency
is η(2ω) � 2 × 10−11, corresponding to the energy flux
density I(2ω) � 100 W/cm2. The forth harmonic gen-
eration efficiency is smaller than η(2ω) by two orders of
magnitude.
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Fig. 4. The rotation angle Ψ(2n, γ) of the even harmonics po-
larization plane with respect to that of the fundamental wave
vs. the harmonic number. The numbers on the curves corre-
spond to four values of the ratio of the electron quiver velocity
to the thermal one γ = vE/vT = 0.5, 2, 4, 10. For the meaning
of symbols see caption to Figure 1.

6 Conclusions

We have shown that the electron directed motion due to
the presence of a constant electric field yields an enrich-
ment of plasma emission spectrum if the plasma inter-
acts with a high-frequency external radiation field. Specif-
ically, in the plasma spectrum appear even harmonics of
the external high-frequency field. This property may be
exploited to diagnose electron drift motions in plasmas.
In fact, the established properties of the generated even
harmonics allow to diagnose in short time intervals how a
constant homogeneous electric field acts on a plasma. At
the same time, it is clear that a similar possibility occur
also when the time of the constant field action is longer
than the inverse of the e-i effective collision frequency. For
times greater than ν−1 in a static field

−→
E 0 a quasistation-

ary electron drift is established, if E0 is smaller than the
Dreicer critical field. In such a case, the EDF anisotropic
part is inversely proportional to the e-i collision frequency
and exhibits a dependence on velocity, different as com-
pared to that occurring at small times, when νt < 1. As
a consequence, the even harmonic properties for νt > 1
are different as compared to those resulting when νt < 1.
The investigation of the harmonic properties in the case
νt > 1 requires a somewhat different treatment, which is
dealt with in a separate paper [12].
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Fig. 5. The same function as in Figure 4 vs. γ = vE/vT for
the even harmonics 2ω, 4ω and 6ω. For the meaning of symbols
see caption to Figure 1.
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